
Going in a Loop With Mixed Integer Linear
Programming

Rohan Jhunjhunwala1

1Personal Project, BS, EECS Berkeley

Abstract

We present a Mixed Integer Linear Programming formulation of a recreational
mathematics problem and discuss some practical limitations of the model.

The resulting formulation is able to find a simple cycle of length 50 kilometers
running only on roads in Jersey City within ~1.25 kilometers of its center.

Keywords: Integer Linear Programming, Nonlinear Programming, Computational Geo-
metry, Ultramarathon Running

1. Formal problem statement

Given the set of “Established roads and trails” in a given region find the route in
this area with the best ratio of distance to diameter which is still a simple cycle.

This is the predicate of the “Long Tiny Loop” challenge. The challenge creator ex-
plains in further detail, “Long Tiny Loop is a fitness challenge that also tests your nav-
igational and cartographic aptitude. Your goal is to traverse the longest possible non-
self-intersecting loop within the smallest possible region, without revisiting any streets or
intersections. If you love computational geometry and graph theory almost as much as
you love outdoor workouts, this site is for you.” 1

To complete this challenge, we present an integer linear programming formulation of
this problem.

• In the first section, we discuss the challenges of sourcing a dataset for the list of
“established roads and trails” and techniques for reducing its size.

1https://longtinyloop.com/faq

1

https://longtinyloop.com/
https://longtinyloop.com/
https://longtinyloop.com/
https://longtinyloop.com/faq

• In the second section, we present a naive model along with successive refinements
that improve performance, making it feasible to apply the model to large datasets,
such as those of entire cities.

• Finally, we describe potential future work, including an exploration of the market
for commercial optimization software.

2. Data Ingestion

Data ingestion for this problem presents several challenges. The phrase “established
road or trail” is quite ambiguous. Most urban streets have a sidewalk on each side, but
the challenge, as stated, is interpreted over a set of undirected edges. Therefore, it would
not be permissible to run down the sidewalk on the right and return on the sidewalk on
the left. However, OpenStreetMap generally presents these as separate roads.

To address this, we used several techniques to pre-process the data. These techniques
are as follows:

• R-tree algorithms: We utilized R-trees and disjoint sets to merge nearby vertices
into a single vertex, remove parallel roads and split roads with nearby vertices into
multiple roads. These algorithms helped clean but often introduced a considerable
amount of noise. We had to careful to tune the parameters to ensure we didn’t
oversimplify the graph and introduce spurious connections.

• Pruning the graph: We removed “Isolated Vertices”, bridges, and degree 2 vertices
to construct a simplified graph whose solutions are in one-to-one correspondence
with our original graph.

• Optional Manual validation: Once the data was cleaned, we manually reviewed
the resulting cycles from the model.

3. Model Formulation

Using basic nomenclature, we can begin to formalize a mathematical description of the
problem. First, we will present the problem using abstract combinatorial notation (list-
s/sets), and then we will discuss how each component can be made linear.

2

V ⊆ R2 The coordinates of street intersections.

l ∈ R The distance I’m willing to run.

E ⊆ V ×V The set of roads, as pairs of vertices.

C ⊆ P(E) The set of all cycles of edges.

Vc ⊆ P(V) The subset of vertices representing the path I run.

We ∈ R The length of a given edge e.

We can now formulate the model in the abstract. We intentionally leave the definition of
some terms like diameter vague to make room for a more formal model later on.

max
c ∈ C

∑
e∈c We

diameter(c)
s.t.

∑
e∈E

We ≤ l

∀s ∈ P(Vc), ∃(u, v) ∈ E, s.t. u ∈ s and v ∈ Vc \ s

Looking at this formulation, we see a challenge. Ostensibly, we have O(2|V |) con-
straints. Fortunately, modern solvers allow us to insert these cuts only each time we
notice a violation. This approach is known as the “DFJ” formulation for subtour elimin-
ation and is typically quite performant in practice. 2

We still face challenges in converting this into a workable Mixed Integer Linear Pro-
gramming (MILP) formulation. First, computing the diameter of C is difficult. Then,
once we have both the diameter and the length of the cycle, we need to compute their
ratio. There are several ways to handle this, but we chose the most maintainable and
performant approach for our optimization software, Gurobi.

For the division, we have the optimizer maximize the difference between the logar-
ithms of the length and the diameter. To compute this logarithm we utilize a piecewise
linear approximation. Gurobi handles the details of the piecewise linear constraint for
us. Constructing the diameter is less straightforward. Naively, the diameter constraint
turns the problem into a Mixed Integer Second Order Conic Program (MISOCP). This
destroyed our performance in practice. Instead, we added N constraints that define an
N -gon and enforced that every selected point lies inside this N -gon.

The coordinates of a given vertex are represented as (vx, vy) in an approximately flat
local Euclidean plane. We consider the case where N = 20 thus treating a circle as a

2https://pubsonline.informs.org/doi/abs/10.1287/opre.2.4.393

3

https://pubsonline.informs.org/doi/abs/10.1287/opre.2.4.393

20-gon which should be a reasonable approximation.

Omitting the subtour elimination constraints, which we add lazily, we arrive at the
following formulation.

max
c ∈ C

loglength − logdiameter

s.t. 0 ≤ length ≤ l

0 ≤ radius ≤ 2500

loglength = log(length)

logdiameter = log(radius × 2)

∀v ∈ V (hasvertexv ∈ {0, 1})

∀e ∈ E (hasedgee ∈ {0, 1})

∀v ∈ V 2 × hasvertexv =
∑

e=(v,i)∈E

hasedgee

∑
e∈E

hasedgee × We = length

centerx, centery ∈ R

∀i ∈ N, θ = i × 2π

20 , v ∈ V : (vy − centery) sin(θ) + (vx − centerx) cos(θ)

≤ radius + (1 − hasvertexv) × 2500

This formulation allows for finding a collection of cycles with a total length of less
than 50 kilometers and a radius of less than 2500 meters. The value 2500 is a “Big M”
parameter, which should be tuned based on the problem context. A value greater than
the diameter of the town suffices to guarantee correctness.

This formulation, without the diameter and scoring constraints, is “Totally Unimod-
ular”, which results in tight relaxations and excellent solver performance. Occasionally,
the solver will emit a solution with subtours, which we rule out with an additional con-
straint generated by a cut-generation subroutine. In practice, we were able to solve for
the best-scoring 50k loop in all of Jersey City, with a total length of 50 kilometers and a
diameter of approximately 2500 meters.

4. Conclusion and Future Work

So far we have outlined a relatively flexible model for solving the “Long Tiny Loop”
problem. Our algorithm scales well in practice 3 and invites some interesting follow-up
problems.

3https://github.com/rjhunjhunwala/TinyBigLoop

4

https://github.com/rjhunjhunwala/TinyBigLoop

• Improved dataset preprocessing: Further refinement of the data cleaning pro-
cess could lead to more accurate models and faster solutions. High-quality trail
datasets are also intrinsically useful to various efforts in the private and public
sector to understand outdoor fitness.

• City planning: This paper shows that Mixed Integer Linear Programs can scale
to the size of relatively large cities. Future work could use similar models to plan
city infrastructure decisions.

• Exploration of commercial solvers: We plan to explore the capabilities of other
commercial solvers such as CPLEX and examine their performance in handling
large datasets and complex models. One solver we briefly attempted to use in this
investigation was “Hexaly”. While Hexaly allowed us to naively port our model using
a handful of lines of code, directly handling our major nonlinearity, it struggled to
even find a feasible solution.

• Human route planning: Investigating why humans are so effective at planning
routes could lead to better heuristic approaches to similar problems.

We are excited to see where these explorations could lead and how they may contribute
to the broader field of optimization and computational geometry. We are also grateful that
this challenge serves to introduce a very diverse audience simultaneously to the disparate
fields of “Computational Geometry”, “Graph Theory”, “Mathematical Optimization”,
“Cartography”, and “Distance Running”.

5. Acknowledgements

We would like to take a moment to thank Stuart Geipel 4 for help parsing the unstructured
XML data from OpenStreetMap. We also acknowledge CBC 5 which is free software while
Gurobi 6 and Hexaly 7 are commercial products that offered academic licenses to help me
complete this investigation.

4https://github.com/pimlu
5https://github.com/coin-or/Cbc
6https://www.gurobi.com/
7https://www.hexaly.com/

5

https://github.com/pimlu
https://github.com/coin-or/Cb
https://www.gurobi.com/
https://www.hexaly.com/

	Formal problem statement
	Data Ingestion
	Model Formulation
	Conclusion and Future Work
	Acknowledgements

