Cheating on Circuit Sat is hard

Rohan Jhunjunwala
University of California, Berkeley
Electrical Engineering and Computer Science
rjhunjhunwala80@berkeley.edu

Abstract

This work came out of an independent exploration of a humorous project pro-
posal for SIGBOVIK (http://www.sigbovik.org/) involving ”pessimal proofs”
aka proof, that can be arbitrarily long yet still provide exponential advantage
over brute force. This is not official academic work, and this was not submitted
to any conference.

We consider a model of computation for CSP’s on n boolean values for which
the solver is allowed to request partial solutions. More precisely, the algorithm
may optionally request the solution for < pn variables (p € (0, 1)) For each such
variable, the solver receives an assignment of the variable along with a promise
that their exists a feasible solution consistent with this partial assignment. We
show a relatively intuitive result: Conditioned on ETH: there exists no polyno-
mial time solver for circuit SAT even if the solver is granted a partial assignment
to p * n variables of its choice. We then suggest a number of open related
problems, and suggest practical applications for our result.

1 Formalisms

For this paper, we consider the search problem circuit sat, that given an explicit f(7) :
{0,1}" — {0,1} find any @* s.t f(7*) = 1 During the process the solver may make
< p#*n queries to some oracle. g(i),7 € {0..n — 1} such that:

37 Vi (@) =1ATT = g(i)

Effectively, g allows partial access to some feasible solution.

There is an obvious SETH based bound that suggests, that, for a carefully chosen
f(z) there does not exist some algorithm to find a satisfying 7™ given access to such
an oracle. Because such an algorithm naturally leads to a O(2P*"+n*) algorithm simply
by enumerating over possible responses of g. For p bounded away from 1 by a constant
epsilon: this gives an algorithm for k-sat with runtime

0(2(1—6)*71)

contradicting the Strong Exponential time hypothesis.
Our main result is stronger, needing only to be conditioned on the ETH.

2 Main Result

We will now appeal only to the exponential time hypothesis to show the nonexistence
of an algorithm that is able to successfully use p * n hints to solve circuit sat.

Recall that the exponential time hypothesis suggests that: k-sat for £ > 3 has
runtime



O(2%*™) Ak > 3,a;, > 0

The strong exponential time hypothesis suggests that the limit of a is 1. Neither
of these hypothesis are proven, however, it seems more easy to believe that all a; are
nonzero then, they necessarily approach exactly one.

The key idea to our proof is introspection. The algorithm can recurse and ask itself,
"what series p * n hints would result in the outer algorithm as a whole terminating in
polynomial time with a correct assignment.”



We use a nondeterminsitic turing machine to model a potential algorithm that
can solve circuit sat in polynomial time without requiring a long witness. The non-
deterministic machine receives it’s p * n nondeterministic choices as an explicit witness
string of p * n bits, and this can be considered a deterministic circuit on p % n inputs.

Algorithm 1 Calculate 7* — f(7") =1

Require: n > 0,p € (0,1),h € {0,1}»" 7* € {0,1}"

Ensure: H chosen nondeterministically f(7*) = 1
Use the pxn hints from H to return a feasible assignment in polymomial time, return
any assignemnt (feasible or otherwise if the witness string was invalid.

Let’s consider an algorithm Y.

Algorithm 2 Calculate 7* — f(7") =1
Require: n > 0,p € (0,1), 7* € {0,1}"
Ensure: f(7%) =1
if recursion depth is less than d then
Construct a function g(h), which is whether or not algorithm X succeeds using h
as a hint vector. Invoke Algorithm Y on g in order to find the correct vector of
hints, and then later the correct vector of assignment to f(x).
else

Give up, and solve the problem with brute force
end if

Now, algorithm Y feels a little too powerful, but let’s formalize this idea. We can
consider it’s run time consider it’s recurrence relation. Let’s say that f is a circuit that
has size C(n) and algorithm x takes time n® * C'(n)®

X(n,C(n)) = X(p*n,n’* C(n)*) 4+ n’* C(n)*
We know C(n) is at least linear, so we can replace define k = a + b
X(n,C(n)) < X(pxn,C(n)*) + C(n)*

If we unwind this recursion to some depth d and use brute force to solve the last layer...
We get an algorithm with runtime dominated by

f(n) € 0P« C(n)t")
Ve > 03d, f(n) € O(29")

This get’s an algorithm with arbitrarily good exponent, this contradicting the ex-
ponential time hypothesis.

3 Further Work

One obvious extension of this work worth considering, is if algorithm 1 also received a
hint as to which subset of variables are most tricky to solve, and then could use those
to request hints. A lengthy calculation shows that our conditional nonexistence result
still only holds for p < .22 If Algorithm Y simply needs to recurse on not just a hint



but also a description of the subset of variables to provide. This bitstring remains short
iff: p i .22. Effectively ...

p+1loga(nCR(n,pxn))/n<1—¢

For p > .22 there is an eplicit way to construct algorithm X where it receives a hint
of which of nC'R(n,p * n) variables to solve, uses that description string to produce a
bit string of length > (1 — p) * nand uses the concatenation of the variables provided
with this other bit string to offer a satisfying assignnment.

A second obvious extension of our work is to (conditionally prove) prove nonex-
istence of algorithm X remains a dream for restricted f(x) in some way, one natural
restriction is in the form of 3sat. Such conditional nonexistence results might also
require bounds on p.

4 Applications

One natural application to this, is to side channel attacks to crypto. Some side channel
attacks partially leak a key. if a crypto problem can be cast as a circuit for wich the
cheating CSP remains hard for all p, it can be seen as a mark of resistance against side
channel attacks.



